

Gavdos/Crete Permanent Cal/Val Facility

34 45

25 12

Copernicus

0

MatLal

EUMETSAT

Cesa

36 56

36 51

35.47

35.4

28 57

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

241.03

24, 00,

21 05

24.00

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

Land & Sea Calibrating Regions

Transponder at CDN1 Cal/Val

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

Copernicus

Cesa

EUMETSAT

Gavdos sea-surface Cal/Val

Groundtracks around Gavdos & Crete

CRETE

0

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

Copernicus

Cesa

eoMatLat

Major Cal/Val and crossover sites

Cesa

oMatLa

EUMETSAT

Cesa

Copernicus

GVD8 GVD7

GVD0

0

34"54

3418

3414

34'45'

2410

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

DIAS

24'06

24'03

Simultaneous Transponder and Sea Cal/Val

★ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24–29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

Copernicus

Cesa

MatLal

Transponder CDN1 Cal/Val Facility ×

Space Generation

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

oMatLa

Sea-surface Cal/Val Facilities

esa

MatLal

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

X Gametica P

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24–29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

13 0 500

1000 1500 2000 2500

Observation No

3000

3500 4000 4500

esa

eoMatLal

GVD3: Transponder Cal/Val in Gavdos

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24–29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

Copernicus

Cesa

CDN1: ESA Sentinel-3 Altimeter Calibration

Copernicus

Cesa

EUMETSAT

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

CDN1: Multi-Mission Transponder Calibrations

Jason-2, 2-Oct-2015

Jason-2, 7-May-2016

SAR 0 201604257030058 201604257030114

CryoSat-2, 25-Apr-2016

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

AGC corrected transponder return over CDN1 CallVal at 11 Nov 2016

MatLab

ETSAT

Jason-3, 11-Nov-2016

Recent Transponder Calibrations

Jason-3, 9-June-2018

X

Copernicus

Cesa

EUMETSAT

Sentinel-3A (up) & Sentinel-3B (down), 17-Sept-2018 Cesa

- Descending Pass No. 18, in 2015 and in 2016 (in Tandem with Jason-3),
- Precise Orbit [POE], Sensor-GDR-D,
- Range Bias B= -12 mm ± 6 mm,
- Variations may be due to **yaw steering** applied in Jason-2 & Jason-3.

JA-3 Transponder Cal/Val: Pass No.18

- Descending Pass No. 18, Cycles: 5-80
- Precise Orbit, Sensor-GDR-D,
- Range Bias B= +0.76 cm ± 0.4 mm,

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

¥

S3A Transponder Cal/Val: Pass No.14

- Ascending Pass No. 14, Cycles: 3-32
- WAT, NTC, Processing Baseline: 2.27,
- Range Bias B= +0.60 cm ± 0.3 cm,

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

- Descending Pass No. 18, Cycles: 2-303
- Precise Orbit [POE], Sensor-GDR-D,
- Sea-Surface Bias B= +6.3 mm ± 3 mm,

Space Generative P.C.

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

- Ascending Pass No. 109, Cycles: 2-298
- Precise Orbit [POE], Sensor-GDR-D,
- Sea-Surface Bias B= +3.3 mm ± 2 mm,

¥

JA-3 Sea-Surface Bias: Pass No.18

- Descending Pass No. 18, Cycles: 5-80
- Precise Orbit [POE], Sensor-GDR-D,
- Range Bias B= -7.4 mm ± 4 mm,

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

JA-3 Sea-Surface Bias: Pass No.109 Copernicus Cesa **EUMETSAT** Jason-3 SSH Bias, Cycles: 1-80, Pass No. 109 (ascending), Precise Orbit, GDR-D, Gavdos Cal/Val 20 Jason-3 SSH Bias = -0.50 cm ± 0.4 cm 15 10 SSH Bias [cm] 5 -5 -10 -15 -20 _____0 20 10 30 40 50 60 70 80 Jason-3 Cycle No.

- Ascending Pass No. 109, Cycles: 1-80
- Precise Orbit [POE], Sensor-GDR-D,
- Range Bias **B**= -5.0 mm ± 4 mm,

★ ★ → 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

- Ascending Pass No. 14, Cycles: 2-31
- WAT, NTC, Processing Baseline: 2.27,
- Sea-Surface Height Bias B= -1.2 mm ± 4 mm,

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

Cesa

- Descending Pass No. 335, Cycles: 1-30
- WAT, NTC, Processing Baseline: 2.27,
- Sea-Surface Bias **B**= -12.0 mm ± 5 mm,

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

¥

- Descending Pass No. 18, Cycles: 285-303
- Tandem mission 28-Mar-2016 to 9-Sept-2016
- Range Difference [JA3-JA2] = +17.7 mm ± 7 mm,

⅔

Transponder: S3A vs JA-3

- 11-Nov-2016:
- Simultaneous Sentinel-3A & Jason-3 over CDN1 and Gavdos Cal/Val sites;
- Range Diff. [S3A-JA3] = -25 mm

Matl a

EUMETSAT

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

Copernicus

Cesa

- Crossover analysis south of Gavdos
- Black circles: Crossover almost the same day;
- Red star: Crossover time difference more than 2 days
- SSH Difference (S3A JA3): +3.75 cm

₩

						Copernicus @esa
Pass No.	.14					
S3A Cycle	S3A SSH Bias	S3B Cycle	S3B SSH Bias	Diff [S3B-S3A]	
33	1.96	10	3.97	2.01 cm		
34	-0.60	11	1.19	1.79 cm		
35	-0.70	12	-2.62	-1.92 cm		
			Mean	+ 0.63 cm		
						Pass No.335
		S3A Cyc	cle S3A SSH B	Bias S3B Cycle	S3B SSH Bias	Diff [S3B-S3A]
		32	0.49	9	3.92	3.43 cm
		33	2.31	10	1.06	-1.25 cm
		34	-3.97	11	-3.80	0.17 cm
					Mean	+ 0.79 cm

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

esa

Summary of Cal/Val in Values

Sea-Surface Cal/Val

Satellite	Ascending	Descending	Average	Cycles
Jason-1	+35.0 mm (No.109)	+47.0 mm (No.18)	+ 41.0 mm	70-100
Jason-2	+3.3 mm (No.109)	+6.3 mm (No.18)	+4.8 mm	2-303
Jason-3	-5.0 mm (No.109)	- 7.4 mm (No.18)	- 6.2 mm	1-80
Sentinel-3A	-1.2 mm (No.14)	-12 mm (No.335)	-6.6 mm	1-32

Transponder Cal/Val	Satellite	Data	Descending	Cycles	
	JA-2	SGDR-D, POE	- 12.0 mm (No.18)	267-303	
	JA-3	SGDR-D, POE	+ 7.6 mm (No.18)	5-80	
_	S-3A	SAR, NTC, PB 2.27	+ 6.0 mm (No. 14)	3-32	
×					C

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

oMatl a

EUMETSAT

Cesa

Copernicus

0

Fiducial Reference Measurements for Altimetry

What is FRM for Altimetry Calibration?

- Cal/Val results connected to an undisputed reference,
- Measurement uncertainty based on:
 - Evaluation of each element contributing to uncertainty,
 - Documented and unbroken chain of calibrations,
 - Connect final uncertainty to SI-traceable
 - measurements (speed of light, absolute time, etc.),

What is the desired FRM result?

- Earth observation reliable in the long term,
- Comparable world-wide,
- Impervious to instrument, setting, location, conditions,
- Build up objective and reliable record for Climate Change,

What resources are available to achieve FRM?

(opernicus

Cesa

FUMETSAT

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

Cal/Val Uncertainty Analysis for SSH Bias \times

Error Constituent	Variance Estimate	Standard Uncertainty
GNSS beight	0 10 mm	+ 0 10 mm
GNSS receiver	6.00 mm	+ 3 50 mm
GNSS ARP	2.00 mm	± 2.00 mm
Water level	1.30 mm	± 1.30 mm
TGzero point	0.15 mm	±1.00 mm
TG vertical alignment	2.40 mm	± 1.40 mm
TG certificate	5.50 mm	± 5.50 mm
Leveling	0.13 mm	± 0.12 mm
Monumentation	1.10 mm	± 0.64 mm
Vertical misalignment	1.00 mm	± 0.60 mm
Leveling observer	1.00 mm	± 0.60 mm
Leveling instrument/method	1.00 mm	± 0.60 mm
TP reading	1.00 mm	± 0.60 mm
MSS	33.00 mm	± 33.00 mm
MDT	85.00 mm	± 85.00 mm
Geoid	80.00 mm	± 46.20 mm
Processing	0.50 mm	± 0.30 mm
Geoid slope	10.00 mm	± 5.80 mm
Unaccounted effects	20.00 mm	± 11.00 mm
Uncertainty (RMS)		± 36.16 mm

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

Copernicus

0

Cesa

oMatLa

EUMETSAT

Cesa

- Select a standard atomic time & coordinate reference system for all altimetry;
- Define essential observations & instruments to support the Cal/Val;
- Define "benchmark calibrating parameters",
- Characterize and calibrate instruments before in the field;
- Institute the fundamental metrology standards to build trust in Cal/Val;
- Define error constituents in Cal/Val,
- Document procedures to reporting uncertainty budgets for Cal/Val;
- Describe standards, protocols and characterization procedures;
- Regulate the way of global distribution of Cal/Val sites on the globe;
- Establish data formatting, archiving and distribution, and
- Be prepared for future satellite altimetry Cal/Val.

- European Union;
- European Space Agency (FRM4ALT & SERAC);
- CNES;
- Danish Space Center.

Copernicus

Cesa

EUMETSAT

