Significant Wave Height in the Subpolar Seas of the Arctic: Satellite Radar Altimetry Observations spanning Two Decades

Kyle Duncan^{1,2} John M. Kuhn¹ Sinead L. Farrell^{1,2}

 NOAA Laboratory for Satellite Altimetry, College Park, Maryland, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA

- Sea ice in the Arctic Ocean is **declining** in extent, at sea ice margins, retreating from the subpolar seas
- Sea ice acts as a barrier between the ocean and atmosphere, and dampens the effects of ocean waves
- Exposure of new open ocean areas to impact of winter storms
- Potential consequences for marine activities in the subpolar seas such as fisheries and transportation, coastal inundation in low-lying regions

Extent anomalies (%), relative to 1981-2010

Source: Perovich et al., Arctic Report Card, 2017

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM Sinéad L. Farrell

Changing Characteristics of Arctic Ocean & Subpolar Seas

Questions:

- As ice retreats, and fetch increases, has wave height increased in subpolar seas that were traditionally ice-covered during winter?
- Have characteristics of sub-polar northern hemisphere seas changed as the sea ice retreats?
- Have these regions become stormier?
- How frequent are instances of phenomenal wave heights?

Overall Goals:

- Create a climatology of regional characteristics that can be used for future planning.
- Provide NRT tracking to enable timely & informed decisions.

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM Sinéad L. Farrell

Sea Ice Concentration: Apr 1997

Multi-decadal record of change

Study Period: Data analysis conducted over a 24-year time period : 1995 – 2018

- ➤ ERS-2 (1995-05-03 2011-07-04)
- ➤ Jason-1 (2002-01-15 2013-06-21)
- Envisat (2002-05-14 2012-04-08)
- ➤ Jason-2 (2008-07-04 2018-07-29)
- CryoSat-2 (2010-07-14 2018-07-29)
- ➤ SARAL (2013-03-14 2018-07-29)
- ➤ Jason-3 (2016-02-12 2018-07-29)
- Sentinel-3A (2016-03-01 2018-07-29)

> We assess significant wave height (SWH), as derived from leading edge slope of radar altimeter waveforms

> All valid SWH measurements are analyzed, but limited to 99th percentile, and anomalous coastal data excluded

NOAA

Satellite Altimeter Data through RADS

- Data are accessed through the Radar Altimeter Database System (RADS)
- RADS is a partnership between NOAA Laboratory for Satellite Altimetry, the Technical University of Delft and EUMETSAT, as originally created by Remko Scharroo.
- RADS provides a consistent, multi-mission satellite altimeter data record
- Database starts in 1985 with Geosat data
- Continuous data starting in 1991, with ERS-1
- Data available from 1991 present (including near real time data)
- Further details:
 - https://www.star.nesdis.noaa.gov/sod/lsa/RADS.php
 - https://github.com/remkos/rads

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM Sinéad L. Farrell

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

RADAR ALTIMETER DATABASE SYSTEM

NOAA

Regional Analysis: Northern North Atlantic

Winter SWH

Summer SWH

Regional Analysis: Bering Sea

European Space Agency

Winter SWH

Regional Analysis: Bering Sea

Winter SWH >= 4 m

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM Sinéad L. Farrell

SWH Seasonal Cycle – Northern North Atlantic

Laboratory for Satellife Altimetry NOAA-NESDIS-STAR

Northern North Atlantic: Median SWH by Month

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

SWH Seasonal Cycle – Bering Sea

esa

Laboratory for Satellite Altimetry NOAA-NESDIS-STAR European Space Agency

Bering Sea: Median SWH by Month

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

Inter-annual Variability in Winter SWH – Northern North Atlantic

NOAA esa for Satellite Altimetry NOAA-NESDIS-STAF **European Space Agency**

SWH Statistics – Northern North Atlantic – December 1996 - 2016

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

Inter-annual Variability in Winter SWH – Northern North Atlantic

SWH Statistics – Northern North Atlantic – December 1996 - 2016

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM Sinéad L. Farrell

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM Sinéad L. Farrell 24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

NOAA

for Satellite Altimetr

esa

European Space Agency

1

World Meteorological Organization (WMO) sea state code (WMO 3700)

WMO Sea State Code	Wave height	Characteristics
0	0 metres (0 ft)	Calm (glassy)
1	0 to 0.1 metres (0.00 to 0.33 ft)	Calm (rippled)
2	0.1 to 0.5 metres (3.9 in to 1 ft 7.7 in)	Smooth (wavelets)
3	0.5 to 1.25 metres (1 ft 8 in to 4 ft 1 in)	Slight
4	1.25 to 2.5 metres (4 ft 1 in to 8 ft 2 in)	Moderate
5	2.5 to 4 metres (8 ft 2 in to 13 ft 1 in)	Rough
6	4 to 6 metres (13 to 20 ft)	Very rough
7	6 to 9 metres (20 to 30 ft)	High
8	9 to 14 metres (30 to 46 ft)	Very high
9	Over 14 metres (46 ft)	Phenomenal

World Meteorological Organization (WMO) sea state code (WMO 3700)

WMO Sea State Code	Wave height	Characteristics
0	0 metres (0 ft)	Calm (glassy)
1	0 to 0.1 metres (0.00 to 0.33 ft)	Calm (rippled)
2	0.1 to 0.5 metres (3.9 in to 1 ft 7.7 in)	Smooth (wavelets)
3	0.5 to 1.25 metres (1 ft 8 in to 4 ft 1 in)	Slight
4	1.25 to 2.5 metres (4 ft 1 in to 8 ft 2 in)	Moderate
5	2.5 to 4 metres (8 ft 2 in to 13 ft 1 in)	Rough
6	4 to 6 metres (13 to 20 ft)	Very rough
7	6 to 9 metres (20 to 30 ft)	High
8	9 to 14 metres (30 to 46 ft)	Very high
9	Over 14 metres (46 ft)	Phenomenal

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM Sinéad L. Farrell

Sinéad L. Farrell

Bering Sea: % SWH Measurements > 9 m ("Very High"/"Phenonmenal" Seas)

Sinéad L. Farrell

18

Total Number of Observations – Bering Sea

European Space Agency

²⁰

Bering Sea: % SWH Measurements > 9 m ("Very High"/"Phenonmenal" Seas)

Ex-Typhoon Lan – October 2017

Himawari visible satellite imagery of hurricane force low (937 hPa) in Pacific and Bering Sea

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM Sinéad L. Farrell

Ex-Typhoon Lan – October 2017

Major Winter Storm October 2017

Bering Sea and south of the Aleutian Islands All radar altimeter tracks for 25th October 2017 Seas in excess of 9 m, Largest SWH = 17.4 m

\$0.

"Very Rough" to "Phenomenal" Seas

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

NOAA

European Space Agency

Satellite Sampling Bias - Envisat vs ERS-2: January 2006

SWH Northern North Atlantic: Jan. Envisat Significant Wave Height (m) 11 70°N the straight with case 10 q 0°

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal

Satellite Sampling Bias - Envisat vs ERS-2: January 2006

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM Sinéad L. Farrell

NOAA

- Progress on characterizing SWH in subpolar seas of the Arctic Ocean over 20+ years
- Detected a seasonal cycle in SWH in both regions, with larger median waveheight variability in winter
- Indications of a small increasing trend in median SWH (in NNA)
- In Northern North Atlantic (NNA), occurrence of "very high" or "phenomenal" seas (SWH > 9 m) has tripled over 20-yr period (~ 0.3 % in 1996-2003; ~ 0.6 % in 2004-2010; ~ 0.9 % in 2011-2017)
- In Bering Sea, occurrence of "very high" and/or "phenomenal" seas has doubled (~ 0.5 % in 1996-2007; >1 %2008 – 2017)
- Occurrence of stormy sea observations is related to the number of observations available (multiple satellites with variability in spatial sampling and coverage)
- Difficult to separate trends that are a result of sea ice retreat and satellite sampling
- Next steps: normalize results both spatially and temporally to a/c for sampling; look at satellite sampling biases

The Arctic Ocean

International Bathymetric Chart of the Arctic Ocean

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM Sinéad L. Farrell

Trend in Arctic Ocean SSH: 1995 - 2010 from ERS-2 and Envisat

- Relationship between sea surface height (SSH) and wind stress curl across the Western Arctic Ocean
- Demonstrates freshening in the Beaufort Sea region
- Source: Giles et al., 2012

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal