

Combined assimilation of S-1 and S-3A in the operational model MFWAM : Investigation on bias for SAR mode altimetry

L. Aouf⁽¹⁾ and A. Dalphinet⁽¹⁾

⁽¹⁾ Météo-France, Département Marine et Oceanographie (DirOP/MAR)

Ocean Surface Topography, Science-Team (OSTST) meeting, 23-27 October 2017, Miami, Florida

1-Motivation

- 2- System and methodology
- **3- Wave climatology**
- 4- Results
- **5- Conclusions**

Highest level of waves submersion warning (Violet) For Hurricane IRMA (Sep. 2017)

 Are the SAR wave spectra from Sentinel-1 capable to remove partially or completely the bias of SWH from
 A. SAR model altimetry ?

- Continously Improving the operational wave forecasting system of Météo-France : global and regional scale reliable wave submersion warning (VVS)
- Ensuring the best wave products for the CMEMS Marine service (Global MFC)

Damages caused by hurricane IRMA in Saint-Martin

The global wave forecasting MFWAM CMEMS-MFC-Global

Units

Mean fields from global wave model MFWAM of Meteo-France with ECMWF forcing sea surface wave significant height Date: 2017-06-26 12:00 UTC

Copernicus.marine.eu

SWH 26 June 2017 at 12;00UTC

Global wave model MFWAM (0.2°) forced by ECMWF winds. MFWAM is based on IFS-38R2 code with ST4 physics (Ardhuin et al. 2010) and settings from Mywave project.

In operations assimilation 6 hours: Jason-2 (safe-mode) SARAL since 10 December 2013 Cryosat-2 since 23 April 2014 Jason-3 since October 2016

JCOMM Intercomparison With buoys April 2017

METEO FRANCE Toujours un temps d'avance

Methodology

- 1- waves climatology for swell dominant (primary swell) regime (2015-2016)
- Identifying ocean areas highly affected by primary swell
 Estimating the occurrence of primary swell depending on mean parameters (height and period)
- 2- performing combined assimilation with S3A altimeters and SAR wave spectra from S-1A and 1B, typically for southern winter May-June-July 2017 (intense storms generating swell systems)
- 3- validation of the results with altimeters and buoys and analysis on the bias of SWH

Global wave climatology for primary swell 2015/2016

0

The primary swell is the most energetic swell partition (dominant swell) : wave height, mean period and direction

Primary swell regimes over all ocean basins Average wave height and direction

Primary swell climatology from the model MFWAM : Average mean parameters (2015-2016)

Swell wave height

mean period

 Swell of mean period ranging between 12-14 sec : potential affecting the SAR mode retrieval

METEO FRANCE Toujours un temps d'avance

mean direction

Classification of swell reglme : occurence in %

The occurrence indicates the percentage of observing such swell regime depending on height and mean period over years 2015 and 2016

 12<Tm<14 sec SH>3 m

Ocean areas such as Agulhas, south of Australia and south-east pacific have more than 30 % of occurence

> 12<Tm<14 sec SH>4 m

Daily coverage altimeters wave data and SAR wave spectra from S-1A and 1B

350

S1A and S1B daily orbit tracks

50

100

80 60 40

20

-20 -40 -60 -80

0

Latitude (degrees)

Spectral resolution of 60 frequencies and 72 directions : QC implemented

> ~5000 SAR spectra Daily

SAR wave spectra capture waves with range between 200 to 800 m of wavelength

3-day coverage of S-3A (23-25 June 2017)

150

200

Longitude (degrees)

250

300

Storm in southern ocean on 23 June 2017 : Warning for swell at La Réunion

Impact of combined assimilation of altimeters and SAR spectra on SWH

The best performance on SWH when using 4 altimeters with SAR spectra (SI <10%):

High Lat | |> 50° **Experiments description:** Intermediate lat 20°<| |<50° EXP-A Ja-2 SRL CR2 **S**3 Ja-3 S1A S1B Tropics | |<20° Α EXP-B Ja-2 Ja-3 SRL CR2 **S**3 S1A S1B Α At least 1 altimeter is kept for No assimilation EXP-D the validation **METEO FRANCE** Period of May-June-July 2017 Toujours un temps d'avance

Bias maps of SWH (The story) the assimilation of SWH from S3A

Sentinel-3A increases the bias of SWH after the assimilation. Bias induced possibly by swell effect on the retrieval of SAR mode altimetry

MFWAM+S3A

without assimilation

Period of May-Jun-Jul 2016 Validation with JA3 and Saral

Global bias map during the southern winter

Bias reduction when using S-1A and 1B : zoom on southern ocean

Assimilation of S3A

Combined assimilation of S3A and S1

During southern winter June-July 2017

Strong reduction of SWH bias (~50%) in south Australia

Bias reduction when using S-1A and 1B : Focus on Agulhas area

Assimilation of S3A

Combined assimilation of S3A and S1

During Southern winter June-July 2017

SWH bias reduces from 20 to 13 cm when using SAR spectra from S1A &1B

Validation with SWH from Stratus buoy

Same trend : bias of SWH is reduced when using SAR Wave spectra from S1A and S1B

Stratus

Bias maps from altimeters validation

Testing on bias correction for S-3A

Assimilation run with correction on S3A has been performed.

Improvements after using correction

Conclusions

Yes : the combined assimilation is efficient for removing partially the SWH bias of S3A.

Ocean areas identified by the wave climatology are highly consistent with using SAR wave spectra from S-1A and 1B

In the frame of Copernicus marine service (CMEMS-global) the S3A and S-1A S-1B will be included in the assimilation system the end of 2017.

Looking forward for evaluating waves products issued from the LR-RMC processing (F. Boy).

